1

Fundamentals of Solid State Physics

Electronic Devices

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Further Reading

- Ashcroft & Mermin, Chapter 29
- PV Education online course, Chapter 3
 - https://www.pveducation.org/

Semiconductors - Applications

semiconductors are the basis of electronics and photonics

integrated circuits

LEDs

lasers

detectors

solar cells

key components: junctions

Junctions

- Semiconductor-Semiconductor
 - □ pn homojunction 同质结
 - heterojunction 异质结
- Metal-Metal
- Metal-Semiconductor
 - Ohmic contact
 - Schottky contact
- Metal-Oxide-Semiconductor
 MOSFET 场效应晶体管

p-type and n-type semiconductor

p-type and n-type semiconductor

p-Si

n-Si

electrons and holes recombine

at thermal equilibrium, carrier diffusion is balanced by drift caused by the built-in field. Overall current = 0

pn homojunction 同质结

p-type and n-type semiconductor

V_{bi} - built-in potential 内建电势

p-Si

$$N_A = P_v(T)e^{-(\mu_p - E_v)/k_BT}$$

$$\mu_p = E_v + k_B T \ln\left(\frac{P_v(T)}{N_A}\right)$$

n-Si

$$N_D = N_c(T)e^{-(E_c - \mu_n)/k_B T}$$

$$\mu_n = E_c - k_B T \ln\left(\frac{N_c(T)}{N_D}\right)$$

q - electron charge 1.6*10⁻¹⁹ C

13

V_{bi} - built-in potential 内建电势

$$qV_{bi} = \mu_n - \mu_p$$

= $E_c - E_v - k_B T \cdot \ln\left(\frac{N_c(T)P_v(T)}{N_A N_D}\right)$
= $E_g - k_B T \cdot \ln\left(\frac{n_i^2 e^{+E_g/k_B T}}{N_A N_D}\right)$
= $k_B T \cdot \ln\left(\frac{N_A N_D}{n_i^2}\right)$

$$n_i = \sqrt{N_v(T)P_v(T)} \cdot e^{-E_g/2k_BT}$$

V_{bi} - built-in potential 内建电势

$$V_{bi} = \frac{k_B T}{q} \cdot \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

q - electron charge 1.6*10⁻¹⁹ C

Example:

For a Si pn junction, if N_A = 1e18 cm⁻³, N_D = 1e15 cm⁻³, and n_i = 1.5e10 cm⁻³, T = 300 K

$$V_{bi} = 0.75 \text{ V}$$

$$qV_{bi} = 0.75 \text{ eV}$$
 < $E_g = 1.12 \text{ eV}$

pn homojunction 同质结

Q: How to calculate the depletion width W?

Full-depletion Approximation

Assume abrupt transition Charge Balance E-field $N_A x_p = N_D x_n$ Charge 0 $x_{\rm p} + x_{\rm n}$ $x_{\rm p}$ x Θ **Gauss's Law** E Electric field ∂E $\frac{\partial E}{\partial x} = \frac{q}{\varepsilon_s} Q(x)$ x $\frac{\partial V}{\partial x} = -E(x)$ ΔV built-in voltage Voltage x

Full-depletion Approximation

- ε_s dielectric constant / permittivity (F/m) 介电常数
- ε_r relative dielectric constant
- q electron charge 1.6*10⁻¹⁹ C

Full-depletion Approximation

Example:

For a Si pn junction, if N_A = 1e18 cm⁻³, N_D = 1e15 cm⁻³, and n_i = 1.5e10 cm⁻³, T = 300 K, ε_r = 11.2

higher doping -> smaller width

at thermal equilibrium, carrier diffusion is balanced by drift caused by the built-in field. Overall current = 0

V_{bi} decreases by *V*, *W* decreases much more diffusion current, the junction is conductive 20

V_{bi} increases by V, W increases little drift current, the junction is slightly conductive

Current-Voltage Relation

- depend on bandgap, defects, temperature, ...
- *n* ideality factor (for ideal case, *n* = 1)

Current-Voltage Relation

$$J_{0} = q \frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}} + q \frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}}$$

- *D*-diffusivity (m²/s) 扩散系数
- τ carrier lifetime (s)
- L diffusion length (m)

https://www.pveducation.org/pvcdrom/pn-junctions/example-1general-solution-for-wide-base-p-n-junction

Current-Voltage Relation

Solar Cell / Photodetector

Light-Emitting Diode (LED)

Light-Emitting Diode (LED)

Light Emission Efficiency

Direct bandgap semiconductors like GaAs, GaN are more suitable for LEDs and lasers, more radiative recombinations

- Large change in momentum is required for recombination
- Momentum is conserved by mainly phonon (vibration) emission + photon emission

Indirect bandgap semiconductors like Si, Ge do not emit light efficiently more non-radiative recombinations 28

Materials Choices for Light Emission

Semiconductors with direct gaps are more suitable for LEDs and lasers

Case 1

Case 2 n-InGaAs

Case 2

Straddling Gap Staggered Gap Broken Gap

Semiconductor Heterostructures

GaAs/AlGaAs heterostructure: Type I junction electron and hole confinement enhanced radiative recombination for better LEDs and lasers

Z. I. Alferov

H. Kroemer

2000 Nobel Prize in Physics 37

Optoelectronic Devices

Lattice matched GaAs/AIAs structure - perfect interface 38

Metal-Metal Junction

metal 2 becomes more positive

Metal-Metal Junction

Case 1

Schottky contact 肖特基接触

Case 2 Ohmic contact 欧姆接触

Schottky contact 肖特基接触

insulator / capacitor

53

CMOS Technology

Complementary Metal-Oxide-Semiconductor

Video MOSFET

CMOS Logics

CMOS Circuits

Integrated Circuits

Moore's law, Fairchild, 1965

Economist.com

Modern Electronics is a real Nanotechnology

Gordon Moore Intel i7 CPU, ~ 10⁹ transistors

CMOS Process

Thank you for your attention